Transformer模型凭借其高效并行化的特性在自然语言处理任务中取得了巨大的成功。并行化计算不仅加速了训练过程,也使得Transformer在处理长序列数据时更具优势。本文将深入探讨Transformer模型的并行化体现,分析其并行化的具体机制,并讨论Decoder端是否能够进行并行化计算。
Transformer模型凭借其高效并行计算的特性,已经在自然语言处理领域取得了显著成果。Transformer的核心由多层自注意力机制和前馈神经网络(Feed-Forward Neural Network, FFN)组成。前馈神经网络在Transformer块中负责对每个位置的特征进行非线性转换,本文将详细描述Transformer中的前馈神经网络的结构、所用激活函数及其优缺点。
Transformer模型作为自然语言处理和机器翻译任务中的重要架构,其每个模块中使用的正则化方法对模型性能有着显著影响。通常,Transformer选择使用Layer Normalization(LayerNorm)而非Batch Normalization(BatchNorm)。本文将深入分析LayerNorm与BatchNorm的差异、LayerNorm在Transformer中的位置以及为何LayerNorm更适合Transformer模型。
在自然语言处理(NLP)任务中,词向量(Word Embedding)是一种将单词表示为固定大小向量的技术,通常使用的方法包括Word2Vec、GloVe和Transformer中的embedding层。无论使用哪种方法,将输入转化为词向量后,通常需要对其做归一化或缩放处理,而其中一种常见操作是在获取词向量矩阵后,乘以embedding size的开方。本文将深入探讨这种操作的原因与意义,并通过公式和代码示例详细解释。
在 Transformer 模型中,多头注意力机制(Multi-Head Attention)是一个非常重要的组成部分。它通过并行地计算多个注意力头(Attention Head)来增强模型的表示能力。然而,为了控制计算复杂度和内存使用量,通常对每个注意力头进行降维。本文将详细分析这种设计背后的原因,并通过公式和代码展示多头注意力的实现过程。