随着深度学习模型规模的不断扩大,模型的部署和推理变得更加昂贵。量化技术通过降低模型的计算精度(如从浮点数到整数)显著减少模型的存储需求和计算复杂度,是优化大模型的重要手段。目前有多种量化方法被提出,它们各自有针对性的特点和适用场景。本文将介绍以下四种主流量化技术及其差异:
https://arxiv.org/abs/2308.02223
ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation
论文的核心贡献主要包括两方面:
两阶段采样:传统的RL训练在序列生成任务中通常需要为每个生成的候选序列存储计算图,而这会消耗大量内存。为了优化这一点,ESRL采用了两阶段采样方法:在第一阶段,模型采用自回归方式生成候选序列,但不进行反向传播,避免了计算图的存储。第二阶段是计算这些候选序列的概率,利用Transformer的并行计算能力减少了计算图存储的需求。尽管增加了计算时间,但减少了内存消耗。
动态采样:ESRL还引入了动态采样机制,通过估计模型的能力(例如使用BLEU或熵值等度量)来调整采样的大小和温度。具体来说,当模型的能力较强时,减少采样数量;而当能力较弱时,增加采样量以提高探索效果。通过这种方法,ESRL避免了过度采样,从而进一步提高了训练效率。
一切都在此图中,以往模型的采样没有技巧,花费显存和时间,ESRL让这个过程变得高效:
https://arxiv.org/abs/2411.10323
摘要
最近发布的Claude 3.5计算机使用模型脱颖而出,成为首个在公开测试版中提供计算机使用功能的图形用户界面(GUI)代理。作为一个早期测试版,其在复杂的现实环境中的能力仍然未知。在这项探索Claude 3.5计算机使用的案例研究中,我们精心设计并组织了一系列跨越多个领域和软件的任务。通过这些案例的观察,我们展示了Claude 3.5计算机使用在从语言到桌面操作的端到端能力上的前所未有的表现。与此同时,我们还提供了一个开箱即用的代理框架,方便用户部署基于API的GUI自动化模型并轻松实现。本案例研究旨在展示Claude 3.5计算机使用的能力和局限性的基础工作,并通过详细的分析提出关于规划、行动和批判的问题,这些问题必须考虑在内以推动未来的改进。我们希望这项初步探索能激发未来在GUI代理领域的研究。本文中的所有测试案例可以通过以下项目进行尝试:https://github.com/showlab/computer_use_ootb 。
LLaVA-o1把问题的回答拆解为这四个阶段: