本博客的代码:https://github.com/xxddccaa/DDColor-webui
pip install modelscope modelscope download --model 'iic/cv_ddcolor_image-colorization' --local_dir './DDColormodel'
pytroch环境:
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia -y pip install addict modelscope datasets sympy==1.13.1 simplejson sortedcontainers timm
推理:
pythonimport cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
img_colorization = pipeline(Tasks.image_colorization,
model='./DDColormodel')
img_path = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg'
result = img_colorization(img_path)
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
原图:
docker run --gpus all --shm-size=32g -it --net host -v ./:/ddcolor kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-pix2pix bash pip install addict modelscope datasets sympy==1.13.1 simplejson sortedcontainers timm opencv-python apt-get update apt-get install -y libgl1-mesa-glx libjpeg-dev libpng-dev libtiff-dev libopencv-dev docker commit 731cbf160933 kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor docker push kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor
cd /ssd/xiedong/image_color docker run --gpus device=2 \ --shm-size=32g \ -it \ --net host \ -v ./ddcolor_app.py:/ddcolor/ddcolor_app.py \ -v ./DDColormodel:/DDColormodel/ \ kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor bash pip install gradio python /ddcolor/ddcolor_app.py --model_path /DDColormodel --port 7861
用这个镜像也ok:
kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui
bashdocker run --gpus device=2 \ --shm-size=32g \ -it \ --net host \ -v /ssd/xiedong/image_color:/ssd/xiedong/image_color \ kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui bash pip install evaluation_requirements.txt
转换测试图片:
bashpython ddcolor_inference.py \ --model_path /ssd/xiedong/image_color/DDColormodel/ \ --src_dir /ssd/xiedong/image_color/pytorch-CycleGAN-and-pix2pix/results/tongyong_l2ab_4/testA_35/images \ --dst_dir /ssd/xiedong/image_color/ddcolor_test
得到指标:
python evaluate_colorization.py --results_dir /ssd/xiedong/image_color/ddcolor_test --output_dir /ssd/xiedong/image_color/ddcolor_test_metric --use_fid
Metric | Mean | Std Dev | Min | Max | Performance Assessment |
---|---|---|---|---|---|
SSIM | 0.887 | 0.078 | 0.435 | 0.983 | ✅ Excellent (Ideal >0.85) |
PSNR (dB) | 21.65 | 3.63 | 8.91 | 31.73 | ⚠️ Good (Typical 20-30dB) |
MSE | 663.11 | 860.43 | 43.67 | 8349.47 | ⚠️ Moderate (Lower better) |
MAE | 16.25 | 8.20 | 2.55 | 72.02 | ⚠️ Acceptable |
Color Error | 11.39 | 7.55 | 1.46 | 54.99 | ⚠️ Needs Improvement |
LPIPS | 0.166 | 0.072 | 0.025 | 0.472 | ✅ Good (Closer to 0 best) |
FID | 36.51 | - | - | - | ⚠️ Fair (Ideal <30) |
镜像:
kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui-metric
webui 7861
bashcd /your/path/to/image_color
docker run --gpus device=2 \
--shm-size=32g \
-it \
--net host \
-v ./ddcolor_app.py:/ddcolor/ddcolor_app.py \
-v ./DDColormodel:/DDColormodel/ \
kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui-metric bash
python /ddcolor/ddcolor_app.py --model_path /DDColormodel --port 7861
webui 7862
bashcd /your/path/to/image_color
docker run --gpus device=2 \
--shm-size=32g \
-it \
--net host \
-v ./ddcolor_app.py:/ddcolor/ddcolor_app.py \
-v ./DDColormodel:/DDColormodel/ \
kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui-metric bash
python /ddcolor/ddcolor_app.py --model_path /DDColormodel --port 7862
本文作者:Dong
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC。本作品采用《知识共享署名-非商业性使用 4.0 国际许可协议》进行许可。您可以在非商业用途下自由转载和修改,但必须注明出处并提供原作者链接。 许可协议。转载请注明出处!