编辑
2025-01-20
深度学习
00

目录

下载模型
推理
docker环境
webui部署
指标测试
webui快速启动

https://www.modelscope.cn/models/iic/cv_ddcolor_image-colorization/summary#ddcolor-%E5%9B%BE%E5%83%8F%E4%B8%8A%E8%89%B2%E6%A8%A1%E5%9E%8B

本博客的代码:https://github.com/xxddccaa/DDColor-webui

下载模型

pip install modelscope modelscope download --model 'iic/cv_ddcolor_image-colorization' --local_dir './DDColormodel'

推理

pytroch环境:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia -y pip install addict modelscope datasets sympy==1.13.1 simplejson sortedcontainers timm

推理:

python
import cv2 from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks img_colorization = pipeline(Tasks.image_colorization, model='./DDColormodel') img_path = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg' result = img_colorization(img_path) cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])

原图:

audrey_hepburn.jpg

result.png

docker环境

docker run --gpus all --shm-size=32g -it --net host -v ./:/ddcolor kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-pix2pix bash pip install addict modelscope datasets sympy==1.13.1 simplejson sortedcontainers timm opencv-python apt-get update apt-get install -y libgl1-mesa-glx libjpeg-dev libpng-dev libtiff-dev libopencv-dev docker commit 731cbf160933 kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor docker push kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor

webui部署

cd /ssd/xiedong/image_color docker run --gpus device=2 \ --shm-size=32g \ -it \ --net host \ -v ./ddcolor_app.py:/ddcolor/ddcolor_app.py \ -v ./DDColormodel:/DDColormodel/ \ kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor bash pip install gradio python /ddcolor/ddcolor_app.py --model_path /DDColormodel --port 7861

用这个镜像也ok:

kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui

image.png

指标测试

bash
docker run --gpus device=2 \ --shm-size=32g \ -it \ --net host \ -v /ssd/xiedong/image_color:/ssd/xiedong/image_color \ kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui bash pip install evaluation_requirements.txt

转换测试图片:

bash
python ddcolor_inference.py \ --model_path /ssd/xiedong/image_color/DDColormodel/ \ --src_dir /ssd/xiedong/image_color/pytorch-CycleGAN-and-pix2pix/results/tongyong_l2ab_4/testA_35/images \ --dst_dir /ssd/xiedong/image_color/ddcolor_test

得到指标:

python evaluate_colorization.py --results_dir /ssd/xiedong/image_color/ddcolor_test --output_dir /ssd/xiedong/image_color/ddcolor_test_metric --use_fid
MetricMeanStd DevMinMaxPerformance Assessment
SSIM0.8870.0780.4350.983✅ ​​Excellent​​ (Ideal >0.85)
PSNR (dB)21.653.638.9131.73⚠️ ​​Good​​ (Typical 20-30dB)
MSE663.11860.4343.678349.47⚠️ ​​Moderate​​ (Lower better)
MAE16.258.202.5572.02⚠️ ​​Acceptable​
Color Error11.397.551.4654.99⚠️ ​​Needs Improvement​
LPIPS0.1660.0720.0250.472✅ ​​Good​​ (Closer to 0 best)
FID36.51---⚠️ ​​Fair​​ (Ideal <30)

镜像:

kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui-metric

webui快速启动

webui 7861

bash
cd /your/path/to/image_color docker run --gpus device=2 \ --shm-size=32g \ -it \ --net host \ -v ./ddcolor_app.py:/ddcolor/ddcolor_app.py \ -v ./DDColormodel:/DDColormodel/ \ kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui-metric bash python /ddcolor/ddcolor_app.py --model_path /DDColormodel --port 7861

webui 7862

bash
cd /your/path/to/image_color docker run --gpus device=2 \ --shm-size=32g \ -it \ --net host \ -v ./ddcolor_app.py:/ddcolor/ddcolor_app.py \ -v ./DDColormodel:/DDColormodel/ \ kevinchina/deeplearning:2.5.1-cuda12.1-cudnn9-devel-ddcolor-webui-metric bash python /ddcolor/ddcolor_app.py --model_path /DDColormodel --port 7862
如果对你有用的话,可以打赏哦
打赏
ali pay
wechat pay

本文作者:Dong

本文链接:

版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC。本作品采用《知识共享署名-非商业性使用 4.0 国际许可协议》进行许可。您可以在非商业用途下自由转载和修改,但必须注明出处并提供原作者链接。 许可协议。转载请注明出处!