针对您的场景(普通Qwen3-VL 8B,4机32卡),我给出最优配置方案:
核心配置:
yaml展开代码# 基础配置
model_name_or_path: Qwen/Qwen3-VL-8B-Instruct
do_train: true
stage: sft
finetuning_type: full
freeze_vision_tower: false
freeze_multi_modal_projector: false
freeze_language_model: false
# 数据设置
dataset: your_dataset
template: qwen3_vl
cutoff_len: 4096
image_max_pixels: 451584
# 训练参数
output_dir: saves/qwen3_vl_8b_32gpu
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
num_train_epochs: 3
learning_rate: 2e-5
lr_scheduler_type: cosine
bf16: true
logging_steps: 5
save_steps: 200
# Megatron并行配置
tensor_model_parallel_size: 4 # 4卡TP(节点内)
pipeline_model_parallel_size: 1 # 不用PP
sequence_parallel: false
# 性能优化
bias_activation_fusion: true
apply_rope_fusion: true
use_distributed_optimizer: true
overlap_param_gather: true
overlap_grad_reduce: true
并行拓扑:
展开代码数据并行 (DP) = 32 / (4 * 1) = 8 路 - 每个节点2个DP组(8卡/节点 ÷ 4卡TP = 2组) - 8个DP组分布在4台机器上 张量并行 (TP) = 4 - 每4卡一组,共享模型权重切片 - 在节点内或跨2个节点 全局Batch Size = 8 (DP) × 1 (bs) × 8 (acc) = 64
优势: ✅ TP=4足够放下8B模型单层的切片 ✅ DP=8提供充足的并行度 ✅ 避免PP的bubble损失(PP效率通常85-90%) ✅ 跨节点只有DP梯度同步,可与计算重叠
yaml展开代码# 与方案1不同之处
per_device_train_batch_size: 2 # TP=8显存更多,可增大bs
gradient_accumulation_steps: 8
tensor_model_parallel_size: 8 # 整机8卡做TP
pipeline_model_parallel_size: 1
sequence_parallel: true # TP=8建议开启
并行拓扑:
展开代码DP = 32 / 8 = 4 (每机一组TP,4机=4个DP组) TP = 8 (单机8卡,充分利用NVLink) 全局Batch Size = 4 × 2 × 8 = 64
优势: ✅ TP=8在单节点内,通信最快 ✅ 每卡显存占用最小(模型切成8份) ✅ 可以增大per_device_batch_size到2 ⚠️ DP=4并行度较低,但batch size可补偿
yaml展开代码# 与方案1不同之处
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
tensor_model_parallel_size: 2 # 最小TP
pipeline_model_parallel_size: 2 # 2段流水线
sequence_parallel: false
# PP专用参数
virtual_pipeline_model_parallel_size: 2 # 虚拟流水线减少bubble
并行拓扑:
展开代码DP = 32 / (2 * 2) = 8 TP = 2 (每2卡一组) PP = 2 (模型分2段) 每个节点:8卡 / 2(TP) = 4组,每组再分2段PP
优势: ✅ DP=8高并行度 ✅ TP=2通信开销小 ⚠️ PP=2引入10-15% bubble loss ⚠️ 配置较复杂
yaml展开代码# 当 TP >= 4 时开启,可节省激活内存
tensor_model_parallel_size: 4
sequence_parallel: true # 沿序列维度并行,降低激活显存
# TP < 4 时不建议开启
tensor_model_parallel_size: 2
sequence_parallel: false
bash展开代码# 估算Qwen3-VL 8B显存占用
python3 -c "
model_params = 8e9 # 8B参数
bytes_per_param = 2 # bf16
# 模型权重
model_memory = model_params * bytes_per_param / 1e9 # GB
# 优化器状态 (Adam: 8 bytes/param for fp32 momentum+variance)
optimizer_memory = model_params * 8 / 1e9
# 梯度
gradient_memory = model_params * bytes_per_param / 1e9
# 激活(粗略估计)
activation_memory_per_layer = 0.5 # GB
num_layers = 32
activation_memory = activation_memory_per_layer * num_layers
print(f'=== Qwen3-VL 8B 单卡显存估算 (不考虑并行) ===')
print(f'模型权重: {model_memory:.1f} GB')
print(f'优化器状态: {optimizer_memory:.1f} GB')
print(f'梯度: {gradient_memory:.1f} GB')
print(f'激活内存: {activation_memory:.1f} GB (bs=1, len=4096)')
print(f'总计: {model_memory + optimizer_memory + gradient_memory + activation_memory:.1f} GB')
print()
# TP=4时的显存
print(f'=== TP=4, 分布式优化器时的单卡显存 ===')
tp = 4
print(f'模型权重: {model_memory/tp:.1f} GB')
print(f'优化器状态: {optimizer_memory/tp:.1f} GB (分布式优化器)')
print(f'梯度: {gradient_memory/tp:.1f} GB')
print(f'激活内存: {activation_memory:.1f} GB (激活不切分)')
print(f'总计: {(model_memory + optimizer_memory + gradient_memory)/tp + activation_memory:.1f} GB')
"
显存估算结果:
展开代码=== Qwen3-VL 8B 单卡显存估算 (不考虑并行) === 模型权重: 16.0 GB 优化器状态: 64.0 GB 梯度: 16.0 GB 激活内存: 16.0 GB (bs=1, len=4096) 总计: 112.0 GB === TP=4, 分布式优化器时的单卡显存 === 模型权重: 4.0 GB 优化器状态: 16.0 GB (分布式优化器) 梯度: 4.0 GB 激活内存: 16.0 GB (激活不切分) 总计: 40.0 GB
根据GPU型号选择:
yaml展开代码# A100/H100 80GB:显存充足
recompute_granularity: null # 或不设置
# 预计显存: ~40GB (TP=4) 或 ~45GB (TP=8)
# A100 40GB:显存紧张
recompute_granularity: selective # 节省约30%激活内存
# 预计显存: ~30GB (TP=4)
# V100 32GB:显存非常紧张
recompute_granularity: full # 节省约50%激活内存
per_device_train_batch_size: 1 # 且必须bs=1
# 预计显存: ~25GB (TP=4)
yaml展开代码# 目标:全局batch size = 64-128 (经验值)
# TP=4, DP=8
gradient_accumulation_steps: 8 # 全局bs = 8*1*8 = 64
# 或
gradient_accumulation_steps: 16 # 全局bs = 8*1*16 = 128
# TP=8, DP=4
gradient_accumulation_steps: 8 # 全局bs = 4*2*8 = 64
per_device_train_batch_size: 2 # TP=8显存更多
yaml展开代码# === 模型和数据 ===
model_name_or_path: Qwen/Qwen3-VL-8B-Instruct
dataset_dir: /path/to/your/data
dataset: your_dataset
template: qwen3_vl
cutoff_len: 4096
image_max_pixels: 451584
video_max_pixels: 16384
trust_remote_code: true
# === 训练配置 ===
do_train: true
stage: sft
finetuning_type: full
# 多模态部位训练控制
freeze_vision_tower: false # 训练视觉编码器
freeze_multi_modal_projector: false # 训练投影层
freeze_language_model: false # 训练语言模型
# === 超参数 ===
output_dir: saves/qwen3_vl_8b_4m32g
per_device_train_batch_size: 1 # 单卡batch
gradient_accumulation_steps: 8 # 累积步数
num_train_epochs: 3
learning_rate: 2e-5
lr_scheduler_type: cosine
warmup_ratio: 0.03
weight_decay: 0.01
bf16: true
# === 日志和保存 ===
logging_steps: 5
save_steps: 200
save_strategy: steps
save_total_limit: 3
evaluation_strategy: no # 或 steps
load_best_model_at_end: false
report_to: tensorboard
# === 数据加载 ===
preprocessing_num_workers: 16 # 4机32卡,多进程预处理
dataloader_num_workers: 4
dataloader_pin_memory: true
remove_unused_columns: false
# === 分布式配置 ===
ddp_timeout: 180000000 # 跨节点超时时间
ddp_find_unused_parameters: false
# ===== Megatron-Core并行配置 =====
# DP=8, TP=4, PP=1, 总计32卡
tensor_model_parallel_size: 4 # 4路张量并行
pipeline_model_parallel_size: 1 # 不用流水线并行
sequence_parallel: false # 4096长度下不需要
# === Megatron性能优化 ===
bias_activation_fusion: true # 融合bias和激活
apply_rope_fusion: true # 融合RoPE计算
use_distributed_optimizer: true # 分布式优化器(必须)
overlap_param_gather: true # 参数预取(重要)
overlap_grad_reduce: true # 梯度异步规约(重要)
# === 显存优化(根据GPU型号选择)===
# A100/H100 80GB: 不需要recompute
# recompute_granularity: null
# A100 40GB: 使用selective
# recompute_granularity: selective
# V100 32GB: 使用full
# recompute_granularity: full
# per_device_train_batch_size: 1
bash展开代码export USE_MCA=1
export CUDA_DEVICE_MAX_CONNECTIONS=1 # Megatron推荐
export NCCL_IB_DISABLE=0 # 启用InfiniBand
export NCCL_NET_GDR_LEVEL=5 # GPU Direct RDMA
export NCCL_SOCKET_IFNAME=eth0 # 根据实际网卡名修改
bash展开代码# 在主节点执行(node_rank=0):
torchrun \
--nproc_per_node=8 \
--nnodes=4 \
--node_rank=0 \
--master_addr="主节点IP" \
--master_port=29500 \
$(which llamafactory-cli) train examples/megatron/qwen3_vl_32gpu.yaml
# 在其他3个节点分别执行:
# 节点1:node_rank=1
# 节点2:node_rank=2
# 节点3:node_rank=3
torchrun \
--nproc_per_node=8 \
--nnodes=4 \
--node_rank=1 \
--master_addr="主节点IP" \
--master_port=29500 \
$(which llamafactory-cli) train examples/megatron/qwen3_vl_32gpu.yaml
per_device_train_batch_size 到 1recompute_granularity: selectivetensor_model_parallel_size 到 8cutoff_len 到 2048overlap_param_gather 和 overlap_grad_reduce 是否为 trueNCCL_DEBUG=INFO 查看通信瓶颈

本文作者:Dong
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC。本作品采用《知识共享署名-非商业性使用 4.0 国际许可协议》进行许可。您可以在非商业用途下自由转载和修改,但必须注明出处并提供原作者链接。 许可协议。转载请注明出处!