python#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
def IWP_Model_Controlled(u, X, h, J1, J2, l1, l2, c1, c2, m1, m2, Kb, Kt, Ra, g):
theta, theta_dot, phi, phi_dot = X
A = np.array([
[m1 * l1 ** 2 + m2 * l2 ** 2 + J1 + J2, J2],
[J2, J2]
])
B = np.array([
[c1, 0],
[0, (Kt * Kb / Ra) + c2]
])
C = np.array([
-(m1 * l1 + m2 * l2) * g * np.sin(theta),
Kt * u / Ra
])
acceleration = np.linalg.inv(A).dot(-B.dot(np.array([theta_dot, phi_dot])) + C)
dXdt = np.array([theta_dot, acceleration[0], phi_dot, acceleration[1]])
next_X = X + h * dXdt
return next_X
class ADRC:
def __init__(self, dt, r, h, beta1, beta2, beta3, k1, k2, b0):
self.dt = dt
self.r = r
self.h = h
self.beta1 = beta1
self.beta2 = beta2
self.beta3 = beta3
self.k1 = k1
self.k2 = k2
self.b0 = b0
self.v1 = 0.0
self.v2 = 0.0
self.z1 = 0.0
self.z2 = 0.0
self.z3 = 0.0
self.u_prev = 0.0
def fhan(self, x1, x2, r, h):
d = r * h
d0 = h * d
y = x1 + h * x2
a0 = np.sqrt(d ** 2 + 8 * r * abs(y))
if abs(y) > d0:
a = x2 + (a0 - d) / 2 * np.sign(y)
else:
a = x2 + y / h
if abs(a) > d:
return -r * np.sign(a)
else:
return -r * a / d
def TD(self, target):
e = self.v1 - target
fh = self.fhan(e, self.v2, self.r, self.h)
self.v1 += self.dt * self.v2
self.v2 += self.dt * fh
return self.v1, self.v2
def ESO(self, y, u):
e = self.z1 - y
self.z1 += self.dt * (self.z2 - self.beta1 * e)
self.z2 += self.dt * (self.z3 + self.b0 * u - self.beta2 * e)
self.z3 += self.dt * (-self.beta3 * e)
return self.z1, self.z2, self.z3
def NLSEF(self, v1, v2, z1, z2):
e1 = v1 - z1
e2 = v2 - z2
return self.k1 * e1 + self.k2 * e2
def control(self, y, target):
v1, v2 = self.TD(target)
z1, z2, z3 = self.ESO(y, self.u_prev)
u0 = self.NLSEF(v1, v2, z1, z2)
u = (u0 - z3) / self.b0
self.u_prev = u
return u
def iwp_adrc_discrete():
J1 = 0.01186
J2 = 0.0005711
l1 = 0.1053
l2 = 0.14
c1 = 0.04
c2 = 0.0001
m1 = 0.826
m2 = 0.583
Kb = 0.0987
Kt = 0.0987
Ra = 1.5562
g = 9.81
dt = 0.001
t_total = 3
t_steps = int(t_total / dt)
a = m1 * l1 ** 2 + m2 * l2 ** 2 + J1 + J2
b0 = - (Kt / (Ra * (a - J2)))
print(b0)
r = 30
beta1 = 300
beta2 = 30000
beta3 = 1e6
k1 = 150
k2 = 50
adrc = ADRC(dt, r, dt, beta1, beta2, beta3, k1, k2, b0)
theta0 = np.deg2rad(-10)
theta_dot0 = 0.0
phi0 = 0.0
phi_dot0 = 0.0
X = np.array([theta0, theta_dot0, phi0, phi_dot0])
theta_ref = 0.0
theta_history = np.zeros(t_steps)
theta_dot_history = np.zeros(t_steps)
phi_dot_history = np.zeros(t_steps)
time_history = np.zeros(t_steps)
control_history = np.zeros(t_steps)
for i in range(t_steps):
current_time = i * dt
current_theta = X[0]
Vm = adrc.control(current_theta, theta_ref)
Vm = np.clip(Vm, -50, 50)
X = IWP_Model_Controlled(Vm, X, dt, J1, J2, l1, l2, c1, c2, m1, m2, Kb, Kt, Ra, g)
theta_history[i] = np.rad2deg(X[0])
theta_dot_history[i] = X[1]
phi_dot_history[i] = X[3]
control_history[i] = Vm
time_history[i] = current_time
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(time_history, theta_history, label='Pendulum Angle')
plt.plot(time_history, np.zeros_like(time_history), 'r--', label='Target (0°)')
plt.xlabel('Time (s)')
plt.ylabel('Angle (°)')
plt.title('Pendulum Angle Response (θ)')
plt.grid(True)
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(time_history, phi_dot_history, label='Wheel Angular Velocity')
plt.xlabel('Time (s)')
plt.ylabel('Angular Velocity (rad/s)')
plt.title('Wheel Angular Velocity Response (φ̇)')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
if __name__ == '__main__':
iwp_adrc_discrete()
本文作者:Dong
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC。本作品采用《知识共享署名-非商业性使用 4.0 国际许可协议》进行许可。您可以在非商业用途下自由转载和修改,但必须注明出处并提供原作者链接。 许可协议。转载请注明出处!