2025-03-04
深度学习
00

https://modelscope.cn/models/ZhipuAI/CogView4-6B

docker run -it --gpus '"device=1,2,3,4,5,6,7"' --shm-size=64g -v /data/xiedong:/data/xiedong --net host kevinchina/deeplearning:2.5.1-cuda12.4-cudnn9-devel-vlmr1 bash cd /data/xiedong pip install git+https://github.com/huggingface/diffusers.git

运行python:

python
import time from diffusers import CogView4Pipeline # from modelscope import snapshot_download import torch from torch.xpu import device # model_dir = snapshot_download("ZhipuAI/CogView4-6B") pipe = CogView4Pipeline.from_pretrained("./ZhipuAI/CogView4-6B", torch_dtype=torch.bfloat16) # Open it for reduce GPU memory usage # pipe.enable_model_cpu_offload() # pipe.vae.enable_slicing() # pipe.vae.enable_tiling() # cuda device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") pipe = pipe.to(device) prompts = [ "千树万树梨花开", "老虎", "老鼠", "cat" ] for prompt in prompts: time1 = time.time() image = pipe( prompt=prompt, negative_prompt="paintings, sketches, (worst quality, low quality, normal quality:1.7), ", guidance_scale=3.5, num_images_per_prompt=1, num_inference_steps=50, width=1024, height=1024, ).images[0] time2 = time.time() print(f"Time taken: {time2 - time1} seconds") image.save(f"{prompt}_1.png") for prompt in prompts: time1 = time.time() image = pipe( prompt=prompt, negative_prompt="paintings, sketches, (worst quality, low quality, normal quality:1.7), ", guidance_scale=3.5, num_images_per_prompt=1, num_inference_steps=25, width=1024, height=1024, ).images[0] time2 = time.time() print(f"Time taken: {time2 - time1} seconds") image.save(f"{prompt}_2.png")
docker run -it --gpus '"device=2"' --shm-size=64g -v /data/xiedong:/data/xiedong --net host kevinchina/deeplearning:CogView4-6B bash
ZhipuAI/CogView4-6B的全部权重放GPU运行推理1024*1024,占用显存资源: NVIDIA A800-SXM4-80GB 38G显存 每张图耗时17秒。 guidance_scale=3.5, num_images_per_prompt=1, num_inference_steps=25, width=1024, height=1024, ZhipuAI/CogView4-6B的全部权重放GPU运行推理512*512,占用显存资源: NVIDIA A800-SXM4-80GB 32G显存 每张图耗时5秒。 guidance_scale=3.5, num_images_per_prompt=1, num_inference_steps=25, width=512, height=512,
如果对你有用的话,可以打赏哦
打赏
ali pay
wechat pay

本文作者:Dong

本文链接:

版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC。本作品采用《知识共享署名-非商业性使用 4.0 国际许可协议》进行许可。您可以在非商业用途下自由转载和修改,但必须注明出处并提供原作者链接。 许可协议。转载请注明出处!